Deep Learning for Multimedia Processing Applications: Volume Two: Signal Process

US $126.64
大約HK$ 986.60
狀況:
很新
無後顧之憂! 賣家接受退貨。
運送:
免費 Economy Shipping.
所在地:Simi Valley, California, 美國
送達日期:
估計於 11月22日 (星期六)11月26日 (星期三)之間送達 運送地點 94104
估計運送時間是透過我們的獨家工具,根據買家與物品所在地的距離、所選的運送服務、賣家的運送紀錄及其他因素,計算大概的時間。送達時間會因時而異,尤其是節日。
退貨:
30 日退貨. 由買家支付退貨運費,如果你使用 eBay 郵寄標籤,相關費用將從你的退款金額中扣除.
保障:
請參閱物品說明或聯絡賣家以取得詳細資料。閱覽全部詳情查看保障詳情
(不符合「eBay 買家保障方案」資格)
賣家必須承擔此刊登物品的所有責任。
eBay 物品編號:146247994708
上次更新時間: 2025-07-24 18:01:11查看所有版本查看所有版本

物品細節

物品狀況
很新: 狀況完好的書籍。封面發亮且沒有損壞,精裝本書籍含書皮。不存在缺頁或內頁受損,無褶皺或破損,同時也沒有對文字標注/標記,或在留白處書寫內容。內封面上標記極少。書籍的磨損和破損程度也很低。 查看所有物品狀況定義會在新視窗或分頁中開啟
Book Title
Deep Learning for Multimedia Processing Applications: Volume T
ISBN
9781032623344
類別

關於產品

Product Identifiers

Publisher
CRC Press LLC
ISBN-10
1032623349
ISBN-13
9781032623344
eBay Product ID (ePID)
21062640471

Product Key Features

Number of Pages
480 Pages
Language
English
Publication Name
Deep Learning for Multimedia Processing Applications : Volume Two: Signal Processing
Subject
Computer Science, Neural Networks, General, Interactive & Multimedia
Publication Year
2024
Type
Textbook
Author
Huang Mengxing
Subject Area
Computers, Science
Format
Hardcover

Dimensions

Item Length
10 in
Item Width
7 in

Additional Product Features

Intended Audience
College Audience
LCCN
2023-034276
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Table Of Content
1. A Review on Comparative Study of Image-Denoising in Medical Imaging Nasir Ishfaq. 2. Remote Sensing Image Classification: A Comprehensive Review and Applications Uzair Aslam Bhatti, Jingbing Li, Saqib Ali Nawaz, Huang Mengxing, and Raza Muhammad Ahmad. 3. Deep learning framework for Face Detection and Recognition for Dark Faces using VGG19 with Variant of Histogram Equalization Kirti and Gagandeep. 4. A 3D Method for combining Geometric Verification and Volume Reconstruction in a Photo Tourism system Muhammad Sajid Khan and Andrew Ware. 5. Deep Learning Algorithms and Architectures for Multimodal Data Analysis Anwar Ali Sathio, Prof. Dr. Muhammad Malook Rind, and Dr. Abdullah Lakhan. 6. Deep Learning Algorithms - Clustering and Classifications for Multimedia Data Anwar Ali Sathio, Prof. Dr. Muhammad Malook Rind, and Dr. Abdullah Lakhan. 7. A Non-Reference Low-Light Image Enhancement Approach using Deep Convolutional Neural Networks Ziaur Rahman, Muhammad Aamir, Kanza Gulzar, Jameel Ahmed Bhutto, Muhammad Ishfaq, Zaheer Ahmed Dayo, and Khalid Hussain Mohammadani. 8. Human Pose Analysis and Gesture Recognition: Methods and Applications Muhammad Haroon, Saud Altaf, Kanza Gulzar, and Muhammad Aamir. 9. Human Action Recognition Using ConvLSTM with Adversarial Noise and Compressive-Sensing-Based Dimensionality Reduction Concise and Informative Mohsin Raza Siyal, Mansoor Ebrahim, Dr.Nadeem Qazi, Syed Hasan Adil, and Kamran Raza. 10. Application of Machine Learning to Urban Ecology Mir Muhammad Nizamani, Ghulam Muhae-Ud-Din, Qian Zhang, Muhammad Awais, Muhammad Qayyum, Muhammad Farhan, Muhammad Jabran, and Yong Wang. 11. Application of Machine Learning in Urban Land Use Haili Zhang and Qin Zhou. 12. Application of GIS and Remote Sensing Technology in Ecosystem Services and Biodiversity Conservation Mir Muhammad Nizamani, Qian Zhang, Ghulam Muhae-Ud-Din, Muhammad Awais, Muhammad Qayyum, Muhammad Farhan, Muhammad Jabran, and Yong Wang. 13. From Data Quality to Model Performance: Navigating the Landscape of Deep Learning Model Evaluation Muhammad Akram, Wajid Hassan Moosa, and Najiba. 14. Deep Learning for the Turnover Intention of Industrial Workers: Evidence from Vietnam Nguyen Ngoc Long, Nguyen Ngoc Lam, and Bui Huy Khoi. 15. Deep Learning for Multimedia Analysis Hafiz Gulfam Ahmad Umar. 16. Challenges and Techniques to Improve Deep Detection and Recognition Methods for Text Spotting Anuj Abraham and Shitala Prasad. 17. Leaf Classification and Disease Detection Based on R-CCN Deep Learning Approach Tayyab Rehman, Muhammad Sajid Khan, and Noshina Tariq. 18. Deep Learning for Multimedia Analysis: Applications, Challenges, and Future Directions Dr. Ahmed Mateen Buttar, Muhammad Anwar Shahid, Muhammad Nouman Arshad, and Irfan Ali.
Synopsis
Deep Learning for Multimedia Processing is a comprehensive guide that explores the revolutionary impact of deep learning techniques in the field of multimedia processing. Written for a wide range of readers, from students to professionals, this book offers a concise and accessible overview of the application of deep learning in various multimedia domains, including image processing, video analysis, audio recognition, and natural language processing. Divided into two volumes, Volumes Two delves into advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs), explaining their unique capabilities in multimedia tasks. Readers will discover how deep learning techniques enable accurate and efficient image recognition, object detection, semantic segmentation, and image synthesis. The book also covers video analysis techniques, including action recognition, video captioning, and video generation, highlighting the role of deep learning in extracting meaningful information from videos. Furthermore, the book explores audio processing tasks such as speech recognition, music classification, and sound event detection using deep learning models. It demonstrates how deep learning algorithms can effectively process audio data, opening up new possibilities in multimedia applications. Lastly, the book explores the integration of deep learning with natural language processing techniques, enabling systems to understand, generate, and interpret textual information in multimedia contexts. Throughout the book, practical examples, code snippets, and real-world case studies are provided to help readers gain hands-on experience in implementing deep learning solutions for multimedia processing. Deep Learning for Multimedia Processing is an essential resource for anyone interested in harnessing the power of deep learning to unlock the vast potential of multimedia data., This book is a comprehensive guide that explores the revolutionary impact of deep learning techniques in the field of multimedia processing. Volumes Two delves into advanced topics such as convolutional neural networks, recurrent neural networks, and generative adversarial networks, explaining their unique capabilities in multimedia tasks., Deep Learning for Multimedia Processing Applications is a comprehensive guide that explores the revolutionary impact of deep learning techniques in the field of multimedia processing. Written for a wide range of readers, from students to professionals, this book offers a concise and accessible overview of the application of deep learning in various multimedia domains, including image processing, video analysis, audio recognition, and natural language processing. Divided into two volumes, Volume Two delves into advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs), explaining their unique capabilities in multimedia tasks. Readers will discover how deep learning techniques enable accurate and efficient image recognition, object detection, semantic segmentation, and image synthesis. The book also covers video analysis techniques, including action recognition, video captioning, and video generation, highlighting the role of deep learning in extracting meaningful information from videos. Furthermore, the book explores audio processing tasks such as speech recognition, music classification, and sound event detection using deep learning models. It demonstrates how deep learning algorithms can effectively process audio data, opening up new possibilities in multimedia applications. Lastly, the book explores the integration of deep learning with natural language processing techniques, enabling systems to understand, generate, and interpret textual information in multimedia contexts. Throughout the book, practical examples, code snippets, and real-world case studies are provided to help readers gain hands-on experience in implementing deep learning solutions for multimedia processing. Deep Learning for Multimedia Processing Applications is an essential resource for anyone interested in harnessing the power of deep learning to unlock the vast potential of multimedia data.
LC Classification Number
Q325.73.D4 2024

賣家提供的物品說明

賣家簡介

Books From California

99.5% 正面信用評價已賣出 43.36 萬 件物品

加入日期:8月 1999
We offer a wide assortment of Books. Our specialties includes Academic & University Press, Military and Automotive.
瀏覽商店聯絡

詳盡賣家評級

過去 12 個月的平均評級
說明準確
4.9
運費合理
4.9
運送速度
5.0
溝通
5.0

賣家信用評價 (198,459)

全部評級selected
正面
中立
負面
  • f***f (1663)- 買家留下的信用評價。
    過去 6 個月
    購買已獲認證
    Excellent Seller, Goes the Extra Mile. The Seller Was Incredibly Communicative. Smooth Transaction, Shipped Very Quickly, As Advertised; Good Price; Well Packaged & Delivered Within a Few Days. Item in Described Promised Condition, Thank You Very Much!!!!!!!!!!! A+
  • u***n (1405)- 買家留下的信用評價。
    過去 6 個月
    購買已獲認證
    The magazine arrived in the mail quickly with tracking by USPS. The item was shipped in corregated cardboard surrounded by cardboard protected by a plastic sleeve. The item was as described. An excellent value for a vintage item.
  • v***4 (149)- 買家留下的信用評價。
    過去 6 個月
    購買已獲認證
    Purchased 5 car Madison rail car set at auction. Received package well wrapped and in original box. Cars themselves are in excellent condition and mostly as described, although I believe they have seen some track time. That being said, seller offers returns so I'm confident seller was told these cars were new by whomever he got them from. The purchase price was excellent so when averaged with a higher than normal shipping fee it turned out to be an overall good deal.